1
0
Fork 0
This repository has been archived on 2024-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
TP_IA/training.py

60 lines
2 KiB
Python

from os.path import join
from ray import tune
from torch import save, load, nn
from torch.optim import SGD
from NeuralNetwork import NeuralNetwork
from dataset import load_data
from tests import test
def train(train_loader, net, optimizer, criterion, epoch, device):
running_loss = 0.0
epoch_steps = 0
for i, data in enumerate(train_loader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
epoch_steps += 1
if i % 2000 == 1999: # print every 2000 mini-batches
print("[%d, %5d] loss: %.3f" % (epoch + 1, i + 1,
running_loss / epoch_steps))
running_loss = 0.0
def training(config, data_root, device="cpu", checkpoint_dir=None):
net = NeuralNetwork(config["l1"], config["l2"]).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = SGD(net.parameters(), lr=config["lr"], momentum=0.9)
if checkpoint_dir:
model_state, optimizer_state = load(
join(checkpoint_dir, "checkpoint"))
net.load_state_dict(model_state)
optimizer.load_state_dict(optimizer_state)
train_loader, test_loader = load_data(config, data_root)
for epoch in range(10):
train(train_loader, net, optimizer, criterion, epoch, device)
loss, accuracy = test(test_loader, net, criterion, device)
with tune.checkpoint_dir(epoch) as checkpoint_dir:
path = join(checkpoint_dir, "checkpoint")
save((net.state_dict(), optimizer.state_dict()), path)
tune.report(loss=loss, accuracy=accuracy)
print("Finished Training")