from os.path import isfile import torch from numpy import prod from torch import nn from torch.utils.data import DataLoader from torchvision import datasets from torchvision.transforms import ToTensor device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using {device} device") def get_data(batch_size: int = 64): # Download training data from open datasets. training_data = datasets.CIFAR10( root="/home/flifloo/IA/data", train=True, download=True, transform=ToTensor(), ) # Download test data from open datasets. testing_data = datasets.CIFAR10( root="/home/flifloo/IA/data", train=False, download=True, transform=ToTensor(), ) # Create data loaders. train_dataloader = DataLoader(training_data, batch_size=batch_size, shuffle=True) test_dataloader = DataLoader(testing_data, batch_size=batch_size, shuffle=True) return train_dataloader, test_dataloader def generate_layers(inp: int, output: int): layers = 2 conns = (inp+output)*2 stack = [nn.Linear(inp, conns), nn.ReLU()] print(f"input: {inp}, output: {output}, layers: {layers}, conns: {conns}") print("Generating stack...") for _ in range(layers): stack.append(nn.Linear(conns, conns)) stack.append(nn.ReLU()) stack += [nn.Linear(conns, output), nn.ReLU()] print("Stack generated") return stack # Define model class NeuralNetwork(nn.Module): def __init__(self, stack): super(NeuralNetwork, self).__init__() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential(*stack) def forward(self, x): return self.linear_relu_stack(self.flatten(x)) def train(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset) for batch, (X, y) in enumerate(dataloader): X, y = X.to(device), y.to(device) # Compute prediction error pred = model(X) loss = loss_fn(pred, y) # Backpropagation optimizer.zero_grad() loss.backward() optimizer.step() if batch % 100 == 0: loss, current = loss.item(), batch * len(X) print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]") def test(dataloader, model, loss_fn): size = len(dataloader.dataset) model.eval() test_loss, correct = 0, 0 with torch.no_grad(): for X, y in dataloader: X, y = X.to(device), y.to(device) pred = model(X) test_loss += loss_fn(pred, y).item() correct += (pred.argmax(1) == y).type(torch.float).sum().item() test_loss /= size correct /= size print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n") return correct def training(): train_data, test_data = get_data() stack = generate_layers(prod(test_data.dataset.data[0].shape), len(test_data.dataset.classes)) model = NeuralNetwork(stack).to(device) if isfile("model.pth"): print("Loading model from save") model.load_state_dict(torch.load("model.pth")) print(model) loss_fn = nn.CrossEntropyLoss() # lr = sur/sous appretisage optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum=.9) e = 0 c = 0 while c < 0.90: print(f"Epoch {e+1}\n-------------------------------") train(train_data, model, loss_fn, optimizer) c = test(test_data, model, loss_fn) torch.save(model.state_dict(), "model.pth") e += 1 print("Done!") if __name__ == '__main__': training()